A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction.
نویسندگان
چکیده
For more than 30 years, the fundamental goal in molecular motility has been to resolve force-generating motor protein structural changes. Although low-resolution structural studies have provided evidence for force-generating myosin rotations upon muscle activation, these studies did not resolve structural states of myosin in contracting muscle. Using electron paramagnetic resonance, we observed two distinct orientations of a spin label attached specifically to a single site on the light chain domain of myosin in relaxed scallop muscle fibers. The two probe orientations, separated by a 36 degrees +/- 5 degrees axial rotation, did not change upon muscle activation, but the distribution between them changed substantially, indicating that a fraction (17% +/- 2%) of myosin heads undergoes a large (at least 30 degrees) axial rotation of the myosin light chain domain upon force generation and muscle contraction. The resulting model helps explain why this observation has remained so elusive and provides insight into the mechanisms by which motor protein structural transitions drive molecular motility.
منابع مشابه
Myosin light-chain domain rotates upon muscle activation but not ATP hydrolysis.
We have studied the correlation between myosin structure, myosin biochemistry, and muscle force. Two distinct orientations of the myosin light-chain domain were previously resolved using electron paramagnetic resonance (EPR) spectroscopy of spin-labeled regulatory light chains in scallop muscle fibers. In the present study, we measured isometric force during EPR spectral acquisition, in order t...
متن کاملThe mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes.
We propose a molecular mechanism of force generation in muscle, based primarily on site-specific spectroscopic probe studies of myosin heads in contracting muscle fibers and myofibrils. Electron paramagnetic resonance (EPR) and time-resolved phosphorescence anisotropy (TPA) of probes attached to SH1 (Cys 707, in the catalytic domain of the head) have consistently shown that most myosin heads in...
متن کاملProteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary β-glucan
The aim of this study was to examine the changes in muscle proteome of the rainbow trout fed dietary β-glucan. The experimental diets contained 0 (control), 0.1% and 0.2% β-1,3/1,6 yeast glucan. First, feeding larvae were fed to apparent satiation nine times per day with their respective diets over two months. The percentage of body weight gain and feed efficiency of fish fed 0.2% diet was sign...
متن کاملHypotensive Agents
Smooth muscle contraction differs somewhat from skeletal muscle. Ca is involved in the initiation of contraction as it is in skeletal muscle. However, the myosin in smooth muscle must be phosphorylated for activation of the myosin ATPase. Phosphorylation and dephosphorylation of myosin also occurs in skeletal muscle, but phosphorylation is not necessary for activation of the ATPase. In smooth m...
متن کاملRotational dynamics of the regulatory light chain in scallop muscle detected by time-resolved phosphorescence anisotropy.
We have used time-resolved phosphorescence anisotropy (TPA) to study the rotational dynamics of chicken gizzard regulatory light chain (RLC) bound to scallop adductor muscle myofibrils in key physiological states. Native RLC from scallop myofibrils was extracted and replaced completely with gizzard RLC labeled specifically at Cys 108 with erythrosin iodoacetamide (ErIA). The calcium sensitivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 6 شماره
صفحات -
تاریخ انتشار 1998